LOICA

Release 1.0.6

Gonzalo Vidal

CONTENTS

1	Introduction	1
2	Installation	3
3	LOICA allows you to:	5
4	Tutorials	7
5	API Reference 5.1 loica	9 9
6	Introduction	39
7	Installation	41
8	LOICA allows you to:	43
9	Tutorials	45
Ру	thon Module Index	47
In	dex	49

ONE

INTRODUCTION

Welcome to the LOICA (Logical Operators for Integrated Cell Algorithms) repository, our Python package for designing, modeling and characterizing genetic networks.

As you may have noticed, our logo features a beautiful bird—loica (Leistes loyca); a bird native to Chile known for its particular red chest and legendary kindness, with which we share name.

TWO

INSTALLATION

Installing LOICA is way easier than pronuncing it!

pip install loica

For more details please refer to our Wiki for installation instructions and developer guides.

THREE

LOICA ALLOWS YOU TO:

- Compile Code into DNA fragments that execute Cell Algorithms
- Easy programation of genetic network models
- Generation of synthetic data
- Communicate with Flapjack
- Use and output SBOL files
- Use all sorts of cellular computation
- Easy, fluid and customisable DNA design

FOUR

TUTORIALS

Now that you have LOICA installed you can familiarize yourself with the tool using the Jupyter notebook tutorials designed for this purpose.

FIVE

API REFERENCE

This page contains auto-generated API reference documentation¹.

5.1 loica

5.1.1 Subpackages

loica.operators

Submodules

loica.operators.hill1

Module Contents

Classes

Hill1	A class that represents a DNA fragment that encode a
	genetic operator.

class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
Bases: loica.operators.operator

A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of a repressible or inducible promoter that maps an input into an output using a Hill function.

input [Regulator | Supplement] The input of the operator that regulates the expression of the output

output [Regulator | Reporter] The output of the operator that is regulated by the input

alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]

K [int | float] Half expression input concentration in Molar

n [int | float] Hill coefficient, cooperative degree (unitless)

uri [str, optional] SynBioHub URI

¹ Created with sphinx-autoapi

sbol_comp [SBOL Component, optional] SBOL Component

name [str, optional] Name of the operator displayed on the network representation

color: str, optional Color displayed on the network representation

characterize(**flapjack**, **receiver**, **inverter**, **media**, **strain**, **signal**, **biomass_signal**, **gamma**) Parameterize the Operator model that maps Input concentration into Output expression rate

__str__(*self*)
Return str(self).

characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)

expression_rate(self, t, dt)

residuals(self, df, oddf, a_A, b_A, K_A, n_A, gamma)

loica.operators.hill2

Module Contents

Classes

Hill2

A class that represents a DNA fragment that encode a genetic operator.

class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='orange')
 Bases: loica.operators.receiver.Operator

A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.

. . .

input [List [Regulator | Supplement]] The inputs of the operator that regulates the expression of the output

output [Regulator | Reporter | List] The output of the operator that is regulated by the input

alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]

K [int | float] Half expression input concentration in Molar

n [int | float] Hill coefficient, cooperative degree (unitless)

uri [str, optional] SynBioHub URI

sbol_comp [SBOL Component, optional] SBOL Component

name [str, optional] Name of the operator displayed on the network representation

color: str, optional Color displayed on the network representation

characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the Operator model that maps Input concentration into Output expression rate

```
__str__(self)
Return str(self).

characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal, biomass_signal, gamma, lower_bounds=[0] * 8, upper_bounds=[100000000.0, 8, 100000000.0, 1000000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2, 1, 0, 0, 0])

expression_rate(self, t, dt)

forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0, alpha3=0, a_A=100.0, b_A=0, K_A=1, n_A=2, a_B=100.0, b_B=0, K_B=1, n_B=2, Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0, fp_0=0, nt=100)

residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)
```

loica.operators.operator

Module Contents

Classes

Operator	A class that represents a DNA fragment that encode a
	genetic operator.

class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')

A class that represents a DNA fragment that encode a genetic operator.

. . .

loica.operators.receiver

Module Contents

Classes

Receiver	A class that represents a DNA fragment that encode a
	genetic operator.

```
class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
     Bases: loica.operators.operator.Operator
     A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction
     of an inducible promoter that maps an external input into an output using a Hill function.
     input [Regulator | Supplement] The input of the operator that regulates the expression of the output
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
     K [int | float] Half expression input concentration in Molar
     n [int | float] Hill coefficient, cooperative degree (unitless)
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     unit: str, optional Units of the characterization data
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100,
                       gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
```

loica.operators.source

Module Contents

Classes

Source	A class that represents a DNA fragment that encode a
	genetic operator.

class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)

Bases: Operator

A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.

. . .

output [Regulator | Reporter] The output of the operator that is constitutively expressed

loica.operators.sum

Module Contents

Classes

Sum

```
class Sum(input, output, alpha, K, n, uri=None, sbol_comp=None)
    Bases: Operator
    color = skyblue
    shape = s
    __str__(self)
    expression_rate(self, t, dt)
```

Package Contents

Classes

Hill1	A class that represents a DNA fragment that encode a
	genetic operator.
Hi112	A class that represents a DNA fragment that encode a
	genetic operator.
Operator	A class that represents a DNA fragment that encode a
	genetic operator.
	continues on next page

Table 7 – continued from previous page		
Operator	A class that represents a DNA fragment that encode a	
	genetic operator.	
Operator Operator	A class that represents a DNA fragment that encode a	
	genetic operator.	
Operator Operator	A class that represents a DNA fragment that encode a	
	genetic operator.	
Operator Operator	A class that represents a DNA fragment that encode a	
	genetic operator.	
Operator Operator	A class that represents a DNA fragment that encode a	
	genetic operator.	
Receiver	A class that represents a DNA fragment that encode a	
	genetic operator.	
Receiver	A class that represents a DNA fragment that encode a	
	genetic operator.	
Receiver	A class that represents a DNA fragment that encode a	
	genetic operator.	

genetic operator.

genetic operator.

genetic operator.

genetic operator.

A class that represents a DNA fragment that encode a

A class that represents a DNA fragment that encode a

A class that represents a DNA fragment that encode a

A class that represents a DNA fragment that encode a

class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
 Bases: loica.operators.operator.Operator

A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of a repressible or inducible promoter that maps an input into an output using a Hill function.

. . .

Source

Source

Source

Source

Sum

input [Regulator | Supplement] The input of the operator that regulates the expression of the output

output [Regulator | Reporter] The output of the operator that is regulated by the input

alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]

K [int | float] Half expression input concentration in Molar

n [int | float] Hill coefficient, cooperative degree (unitless)

uri [str, optional] SynBioHub URI

sbol comp [SBOL Component, optional] SBOL Component

name [str, optional] Name of the operator displayed on the network representation

color: str, optional Color displayed on the network representation

characterize(**flapjack**, **receiver**, **inverter**, **media**, **strain**, **signal**, **biomass_signal**, **gamma**) Parameterize the Operator model that maps Input concentration into Output expression rate

__**str**__(*self*)
Return str(self).

```
characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
          expression_rate(self, t, dt)
          forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10,
                                         A=0, odval=[1]*100, gamma=0, p0 1=0, p0 2=0, nt=100)
          residuals(self, df, oddf, a A, b A, K A, n A, gamma)
class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol comp=None, color='orange')
          Bases: loica.operators.receiver.Operator
          A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of
          a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
          input [List [Regulator | Supplement]] The inputs of the operator that regulates the expression of the output
          output [Regulator | Reporter | List] The output of the operator that is regulated by the input
          alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
          K [int | float] Half expression input concentration in Molar
          n [int | float] Hill coefficient, cooperative degree (unitless)
          uri [str, optional] SynBioHub URI
          sbol comp [SBOL Component, optional] SBOL Component
          name [str, optional] Name of the operator displayed on the network representation
          color: str, optional Color displayed on the network representation
          characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
                   Operator model that maps Input concentration into Output expression rate
           __str__(self)
                   Return str(self).
          characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal,
                                       biomass signal, gamma, lower bounds=[0] *8, upper bounds=[100000000.0, 8,
                                       100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init x=[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
                                       1, 0, 0, 0])
          expression_rate(self, t, dt)
          forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0,
                                         alpha3=0, a A=100.0, b A=0, K A=1, n A=2, a B=100.0, b B=0, K B=1, n B=2,
                                         Dt=0.05, sim steps=10, A=0, B=0, odval=[1]*100, gamma=0, rep1 0=0, rep2 0=0,
                                        fp \ 0=0, nt=100)
          residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
          A class that represents a DNA fragment that encode a genetic operator.
          output [Regulator | Reporter] The output of the operator that is regulated by the input
          uri [str, optional] SynBioHub URI
          sbol comp [SBOL Component, optional] SBOL Component
```

```
name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     __str__(self)
           Return str(self).
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     . . .
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
      __str__(self)
           Return str(self).
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
      __str__(self)
           Return str(self).
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     __str__(self)
           Return str(self).
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
```

```
sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
      __str__(self)
           Return str(self).
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str. optional Color displayed on the network representation
      __str__(self)
           Return str(self).
class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol comp=None, color='skyblue')
     Bases: loica.operators.operator.Operator
     A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction
     of an inducible promoter that maps an external input into an output using a Hill function.
     input [Regulator | Supplement] The input of the operator that regulates the expression of the output
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
     K [int | float] Half expression input concentration in Molar
     n [int | float] Hill coefficient, cooperative degree (unitless)
     uri [str, optional] SynBioHub URI
     sbol comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     unit: str, optional Units of the characterization data
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model (self, a=0, b=1, K A=1, n A=2, Dt=0.05, sim steps=10, A=[0], odval=[1] * 100,
                       gamma=0, p0=0, nt=100)
```

```
residuals(self, df, oddf)
class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
      Bases: loica.operators.operator.Operator
      A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction
      of an inducible promoter that maps an external input into an output using a Hill function.
      input [Regulator | Supplement] The input of the operator that regulates the expression of the output
      output [Regulator | Reporter] The output of the operator that is regulated by the input
      alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
      K [int | float] Half expression input concentration in Molar
      n [int | float] Hill coefficient, cooperative degree (unitless)
      uri [str, optional] SynBioHub URI
      sbol_comp [SBOL Component, optional] SBOL Component
      name [str, optional] Name of the operator displayed on the network representation
      color: str, optional Color displayed on the network representation
      unit: str, optional Units of the characterization data
      characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
      characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
      expression_rate(self, t, dt)
      forward_model (self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_s teps=10, A=[0], odval=[1]*100,
                       gamma=0, p0=0, nt=100)
      residuals(self, df, oddf)
class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol comp=None, color='skyblue')
      Bases: loica.operators.operator.Operator
      A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction
      of an inducible promoter that maps an external input into an output using a Hill function.
      input [Regulator | Supplement] The input of the operator that regulates the expression of the output
      output [Regulator | Reporter] The output of the operator that is regulated by the input
      alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
      K [int | float] Half expression input concentration in Molar
      n [int | float] Hill coefficient, cooperative degree (unitless)
      uri [str, optional] SynBioHub URI
      sbol comp [SBOL Component, optional] SBOL Component
      name [str, optional] Name of the operator displayed on the network representation
```

```
color: str, optional Color displayed on the network representation
     unit: str, optional Units of the characterization data
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100,
                       gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)
     Bases: Operator
     A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of
     a constitutive promoter that produces output.
     output [Regulator | Reporter] The output of the operator that is constitutively expressed
     rate [float] Output constitutive expression rate in MEFL/second
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model(self, Dt=0.25, sim steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)
     Bases: Operator
     A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of
     a constitutive promoter that produces output.
     output [Regulator | Reporter] The output of the operator that is constitutively expressed
     rate [float] Output constitutive expression rate in MEFL/second
     uri [str, optional] SynBioHub URI
```

```
sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
     __str__(self)
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)
     Bases: Operator
     A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of
     a constitutive promoter that produces output.
     output [Regulator | Reporter] The output of the operator that is constitutively expressed
     rate [float] Output constitutive expression rate in MEFL/second
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
     __str__(self)
     characterize(self, flapjack, vector, media, strain, signal, biomass signal)
     expression_rate(self, t, dt)
     forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Source(output, rate, uri=None, sbol comp=None, color='blue', name=None)
     Bases: Operator
     A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of
     a constitutive promoter that produces output.
     output [Regulator | Reporter] The output of the operator that is constitutively expressed
     rate [float] Output constitutive expression rate in MEFL/second
     uri [str, optional] SynBioHub URI
     sbol comp [SBOL Component, optional] SBOL Component
```

```
name [str, optional] Name of the operator displayed on the network representation
color: str, optional Color displayed on the network representation
characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
    Operator model that maps Input concentration into Output expression rate

__str__(self)
characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
expression_rate(self, t, dt)
forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)
residuals(self, df, oddf)
class Sum(input, output, alpha, K, n, uri=None, sbol_comp=None)
Bases: Operator
color = skyblue
shape = s
__str__(self)
expression_rate(self, t, dt)
```

5.1.2 Submodules

loica.assay

Module Contents

Classes

Assay Measures a set of samples in parallel at a set of timepoints.

class Assay(*samples*, *n_measurements*, *interval*, *name='Loica assay'*, *description=''*, *biomass_signal_id=None*)

Assay measures a set of samples in parallel at a set of timepoints. Connects to flapjack to generate data, and to fit parameters to data.

. . .

samples [List[Sample]] List of Samples that belongs to the Assay

n_measurements [int] Number of measurements to take

interval [int] Time in hours between each measurements

name [str] Name of the Assay

description: str Description of the Assay

biomass_signal_id [int] Flapjack ID of the Assay that is associated with the Assay

run(substeps=10, nsr=0, biomass_bg=0, fluo_bg=0) Runs the Assay time series

upload(flapjack, study) Upload the data produced by running the Assay to Flapjack into the Study

Assay measures a set of samples in parallel at a set of timepoints Connects to flapjack to generate data, and to fit parameters to data

```
run(self, substeps=10, nsr=0, biomass_bg=0, fluo_bg=0, stochastic=False)
    Run the assay measuring at specified time points, with simulation time step dt
upload(self, flapjack, study)
```

loica.colony

Module Contents

Classes

Colony

```
class Colony(circuit=None, r0=1, mu0=1)
    fun(self, x)
    kymograph(self, nx, t0, tmax)
    map_kymo(self, kymo)
    norm_kymo(self, kymo)
```

loica.geneproduct

Module Contents

Classes

GeneProduct	A class that represents a gene product, protein or RNA.
Regulator	Representation of a regulatory gene product.
Reporter	Representation of a regulatory gene product.

class GeneProduct(name, init_concentration=0, degradation_rate=0, uri=None, sbol_comp=None, type_='PRO', color='silver')

A class that represents a gene product, protein or RNA.

. . .

name [str] Name of the gene product

init_concentration [int | float] Initial concentration of the gene product in Molar

degradation_rate [int | float] Degradation rate of the gene product

type_ [str, optional] Molecular type of the gene product, could be 'PRO' or 'RNA'

uri [str, optional] SynBioHub URI

sbol_comp [SBOL Component, optional] SBOL Component

 $shape = ^$

```
__str__(self)
           Return str(self).
     express(self, rate)
     initialize(self)
     step(self, growth rate, dt)
class Regulator(name, init_concentration=0, degradation_rate=0, sbol_comp=None, color='lightgreen')
     Bases: GeneProduct
     Representation of a regulatory gene product. Child of GeneProduct.
class Reporter(name, init_concentration=0, degradation_rate=0, signal_id=None, color='w',
                  sbol comp=None)
     Bases: GeneProduct
     Representation of a regulatory gene product.
     signal_id [str, optional] Flapjack ID of the signal that the reporter is associated with.
     color [str, optional] Color of the reporter
```

loica.genetic_network

Module Contents

Classes

```
GeneticNetwork
                                                       Representation of a genetic netowrk composed by a set
                                                      of Operators, Regulators and Reporters.
```

class GeneticNetwork(vector=None)

initialize(self)

```
Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters.
```

```
operators [List[Operator]] List of Operators that are part of the genetic network
regulators [List[Regulator]] List of Regulators that are part of the genetic network
reporters [List[Reporter]] List of Reporters that are part of the genetic network
vector [int] Flapjack ID of the vector that is associated with the genetic network
to_graph() Builds a graph representation of the genetic netwok
draw() Generates a plot of the graph representation builded by to_graph()
to_sbol(sbol_doc=None) Generates a SBOL3 Document representation of the genetic network on sbol_doc
add_operator(self, ops)
add_regulator(self, regs)
add_reporter(self, reps)
draw(self, node_shape='o', node_size=500, linewidths=0, alpha=0.5, arrowsize=10, font_size=6,
      font_family='Tahoma', font_weight='bold', pos=nx.kamada_kawai_layout, contracted=False)
```

```
 \begin{split} &\textbf{step}(\textit{self}, \textit{growth\_rate}=1, t=0, \textit{dt}=0.1) \\ &\textbf{step\_stochastic}(\textit{self}, \textit{growth\_rate}=1, t=0, \textit{dt}=0.1) \\ &\textbf{substep\_stochastic}(\textit{self}, t=0, \textit{dt}=0.1, \textit{growth\_rate}=1) \\ &\textbf{to\_contracted\_graph}(\textit{self}) \\ &\textbf{to\_graph}(\textit{self}) \\ &\textbf{to\_sbol}(\textit{self}, \textit{sbol\_doc: sbol3.Document} = \textit{None}) \rightarrow \textbf{sbol3.Document} \\ &\textbf{Convert the genetic network to SBOL. :param sbol\_doc: The SBOL document to add the genetic network to.} \end{split}
```

loica.metabolism

Module Contents

Classes

DataMetabolism	Characterized context for gene expression, incorporates
	biomass and growth rate.
Metabolism	Context for gene expression, incorporates biomass and
	growth rate.
SimulatedMetabolism	Simulated context for gene expression, incorporates
	biomass and growth rate.

Functions

```
gompertz(t, y0, ymax, um, 1)

gompertz_growth_rate(t, y0, ymax, um, 1)

ramp_biomass(t, od0, start, slope)

ramp_growth_rate(t, start, slope)

step_biomass(t, od0, start)

step_growth_rate(t, start)
```

class DataMetabolism(name, fj, media, strain, vector, biomass_signal)

Bases: Metabolism

Characterized context for gene expression, incorporates biomass and growth rate. ...

name [str, optional] Name of the metabolism or correponding strain

fj [Flapjack] Flapjack instance used to fetch data from

media [str] Name of the media to querystrain [str] Name of the strain to query

```
vector [str] Name of the vector to query
     biomass_signal [str] Name of signal to query and use as biomass
     biomass(t) Return biomass at a given time from characterization data
     growth:rate(t) Return growth rate at a given time from characterization data
     biomass(self, t)
     growth_rate(self, t)
class Metabolism(name=None)
     Context for gene expression, incorporates biomass and growth rate. ...
     name [str, optional] Name of the metabolism or correponding strain
class SimulatedMetabolism(name, biomass, growth_rate)
     Bases: Metabolism
     Simulated context for gene expression, incorporates biomass and growth rate. ...
     name [str, optional] Name of the metabolism or correponding strain
     biomass A function of time that describes biomass f(t)=biomass
     growth_rate A function of time that describes the growth rate f(t)=growth rate
gompertz(t, y0, ymax, um, l)
gompertz_growth_rate(t, y0, ymax, um, l)
ramp_biomass(t, od0, start, slope)
ramp_growth_rate(t, start, slope)
step_biomass(t, od0, start)
step_growth_rate(t, start)
loica.sample
Module Contents
Classes
                                                         Representation of a sample that encapsulates Genetic-
 Sample
                                                         Network and Metabolism.
class Sample(genetic_network=None, metabolism=None, assay=None, media=None, strain=None)
     Representation of a sample that encapsulates GeneticNetwork and Metabolism. Incorporate environment infor-
     mation such as Supplements or chemicals, strain and media. Ex: 1 well in a plate, single cell. . . .
     genetic_network [GeneticNetwork] genetic network that is part of the sample
     metabolism [Metabolism] metabolism that drives the genetic network in the sample
     assay [Assay] assay to which this sample belongs
```

media [str] Name of the media in the sample

strain [str]

Name of the strain in the sample

Methods

add_supplement(supplement, concentration) stablishes the concentration of Supplement

```
initialize(self)
set_regulator(self, name, concentration)
set_reporter(self, name, concentration)
set_supplement(self, supplement, concentration, profile=None)
step(self, t, dt, stochastic=False)
```

loica.supplement

Module Contents

Classes

Supplement

Representation of a chemical

```
\textbf{class Supplement} (\textit{name}, \textit{pubchemid=None}, \textit{supplier\_id=None}, \textit{sbol\_comp=None}, \textit{color='pink'})
```

Representation of a chemical

. . .

name [str] Name of the supplement

concentration [int | float] concentration of the supplement in Molar

pubchemid [str] PubChemID URI of the supplement

supplier_id [str] Supplier ID of the supplement. An URL of the product that you aquire. Accepts list of the form [product URL, catalog number, batch].

sbol_comp [str] SBOL component of the supplement.

```
__str__(self)
Return str(self).
```

loica.util

Module Contents

Functions

```
characterize_growth(flapjack, vector, media, strain,
biomass_signal, n_gaussians, epsilon)
forward_model_growth(Dt=0.05, sim_steps=10, mu-
val=[0] * 100, od0=0, nt=100)
```

continues on next page

Table 16 – continued from previous page

load_loica(filename)

residuals_growth(data, epsilon, dt, t, n_gaussians)

save_loica(obj, filename)

characterize_growth(flapjack, vector, media, strain, biomass_signal, n_gaussians, epsilon)

forward_model_growth(*Dt*=0.05, *sim_steps*=10, *muval*=[0] * 100, *od*0=0, *nt*=100)

load_loica(filename)

residuals_growth(data, epsilon, dt, t, n_gaussians)

save_loica(obj, filename)

5.1.3 Package Contents

Classes

Assay	Assay measures a set of samples in parallel at a set of timepoints.
Colony	
DataMetabolism	Characterized context for gene expression, incorporates biomass and growth rate.
GeneProduct	A class that represents a gene product, protein or RNA.
GeneticNetwork	Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters.
Hill1	A class that represents a DNA fragment that encode a genetic operator.
Hill1	A class that represents a DNA fragment that encode a genetic operator.
Hill2	A class that represents a DNA fragment that encode a genetic operator.
Hill2	A class that represents a DNA fragment that encode a genetic operator.
Metabolism	Context for gene expression, incorporates biomass and growth rate.
Operator	A class that represents a DNA fragment that encode a genetic operator.
Operator	A class that represents a DNA fragment that encode a genetic operator.
Receiver	A class that represents a DNA fragment that encode a genetic operator.
Receiver	A class that represents a DNA fragment that encode a genetic operator.
Regulator	Representation of a regulatory gene product.
Regulator	Representation of a regulatory gene product.
Reporter	Representation of a regulatory gene product.

Table	17	 continued 	from	previous page	•

	, , ,
Reporter	Representation of a regulatory gene product.
Sample	Representation of a sample that encapsulates Genetic-
	Network and Metabolism.
SimulatedMetabolism	Simulated context for gene expression, incorporates
	biomass and growth rate.
Source	A class that represents a DNA fragment that encode a
	genetic operator.
Source	A class that represents a DNA fragment that encode a
	genetic operator.
Sum	
Supplement	Representation of a chemical
Supplement	Representation of a chemical

Functions

```
characterize_growth(flapjack, vector, media, strain, biomass_signal, n_gaussians, epsilon)

forward_model_growth(Dt=0.05, sim_steps=10, mu-val=[0] * 100, od0=0, nt=100)

gompertz(t, y0, ymax, um, l)

gompertz_growth_rate(t, y0, ymax, um, l)

load_loica(filename)

ramp_biomass(t, od0, start, slope)

ramp_growth_rate(t, start, slope)

residuals_growth(data, epsilon, dt, t, n_gaussians)

save_loica(obj, filename)

step_biomass(t, od0, start)

step_growth_rate(t, start)
```

class Assay(*samples*, *n_measurements*, *interval*, *name='Loica assay'*, *description=''*, *biomass_signal_id=None*)

Assay measures a set of samples in parallel at a set of timepoints. Connects to flapjack to generate data, and to fit parameters to data.

. . .

samples [List[Sample]] List of Samples that belongs to the Assay
n_measurements [int] Number of measurements to take
interval [int] Time in hours between each measurements
name [str] Name of the Assay

```
description: str Description of the Assay
     biomass_signal_id [int] Flapjack ID of the Assay that is associated with the Assay
     run(substeps=10, nsr=0, biomass_bg=0, fluo_bg=0) Runs the Assay time series
     upload(flapjack, study) Upload the data produced by running the Assay to Flapjack into the Study
     Assay measures a set of samples in parallel at a set of timepoints Connects to flapjack to generate data, and to fit
     parameters to data
     run(self, substeps=10, nsr=0, biomass_bg=0, fluo_bg=0, stochastic=False)
           Run the assay measuring at specified time points, with simulation time step dt
     upload(self, flapjack, study)
class Colony(circuit=None, r0=1, mu0=1)
     fun(self, x)
     kymograph(self, nx, t0, tmax)
     map_kymo(self, kymo)
     norm_kymo(self, kymo)
class DataMetabolism(name, fj, media, strain, vector, biomass_signal)
     Bases: Metabolism
     Characterized context for gene expression, incorporates biomass and growth rate. ...
     name [str, optional] Name of the metabolism or correponding strain
     fj [Flapjack] Flapjack instance used to fetch data from
     media [str] Name of the media to query
     strain [str] Name of the strain to query
     vector [str] Name of the vector to query
     biomass_signal [str] Name of signal to query and use as biomass
     biomass(t) Return biomass at a given time from characterization data
     growth:rate(t) Return growth rate at a given time from characterization data
     biomass(self, t)
     growth_rate(self, t)
class GeneProduct(name, init concentration=0, degradation rate=0, uri=None, sbol comp=None,
                      type = 'PRO', color='silver')
     A class that represents a gene product, protein or RNA.
     name [str] Name of the gene product
     init_concentration [int | float] Initial concentration of the gene product in Molar
     degradation_rate [int | float] Degradation rate of the gene product
     type_ [str, optional] Molecular type of the gene product, could be 'PRO' or 'RNA'
     uri [str, optional] SynBioHub URI
     sbol comp [SBOL Component, optional] SBOL Component
```

```
shape = ^{\land}
      __str__(self )
           Return str(self).
     express(self, rate)
     initialize(self)
     step(self, growth_rate, dt)
class GeneticNetwork(vector=None)
     Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters.
     operators [List[Operator]] List of Operators that are part of the genetic network
     regulators [List[Regulator]] List of Regulators that are part of the genetic network
     reporters [List[Reporter]] List of Reporters that are part of the genetic network
     vector [int] Flapjack ID of the vector that is associated with the genetic network
     to graph() Builds a graph representation of the genetic netwok
     draw() Generates a plot of the graph representation builded by to_graph()
     to_sbol(sbol_doc=None) Generates a SBOL3 Document representation of the genetic network on sbol_doc
     add_operator(self, ops)
     add_regulator(self, regs)
     add_reporter(self, reps)
     draw(self, node shape='o', node size=500, linewidths=0, alpha=0.5, arrowsize=10, font size=6,
            font_family='Tahoma', font_weight='bold', pos=nx.kamada_kawai_layout, contracted=False)
     initialize(self)
     step(self, growth\_rate=1, t=0, dt=0.1)
     step_stochastic(self, growth_rate=1, t=0, dt=0.1)
     substep_stochastic(self, t=0, dt=0.1, growth_rate=1)
     to_contracted_graph(self)
     to_graph(self)
     to\_sbol(self, sbol\_doc: sbol3.Document = None) \rightarrow sbol3.Document
           Convert the genetic network to SBOL. :param sbol_doc: The SBOL document to add the genetic network
class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
     Bases: loica.operators.operator.Operator
     A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of
     a repressible or inducible promoter that maps an input into an output using a Hill function.
     input [Regulator | Supplement] The input of the operator that regulates the expression of the output
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
```

```
K [int | float] Half expression input concentration in Molar
     n [int | float] Hill coefficient, cooperative degree (unitless)
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
     characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
     expression_rate(self, t, dt)
     forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10,
                       A=0, odval=[1]*100, gamma=0, p0 1=0, p0 2=0, nt=100)
     residuals(self, df, oddf, a_A, b_A, K_A, n_A, gamma)
class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
     Bases: loica.operators.operator.Operator
     A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of
     a repressible or inducible promoter that maps an input into an output using a Hill function.
     . . .
     input [Regulator | Supplement] The input of the operator that regulates the expression of the output
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
     K [int | float] Half expression input concentration in Molar
     n [int | float] Hill coefficient, cooperative degree (unitless)
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
     characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
     expression_rate(self, t, dt)
     forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10,
                       A=0, odval=[1]*100, gamma=0, p0 1=0, p0 2=0, nt=100)
```

```
residuals(self, df, oddf, a A, b A, K A, n A, gamma)
class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol comp=None, color='orange')
      Bases: loica.operators.receiver.Operator
      A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of
      a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
      input [List [Regulator | Supplement]] The inputs of the operator that regulates the expression of the output
      output [Regulator | Reporter | List] The output of the operator that is regulated by the input
      alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
      K [int | float] Half expression input concentration in Molar
      n [int | float] Hill coefficient, cooperative degree (unitless)
      uri [str, optional] SynBioHub URI
      sbol comp [SBOL Component, optional] SBOL Component
      name [str, optional] Name of the operator displayed on the network representation
      color: str, optional Color displayed on the network representation
      characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
      characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal,
                      biomass signal, gamma, lower bounds=[0] * 8, upper bounds=[100000000.0, 8,
                      100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2,
                      1, 0, 0, 01)
      expression_rate(self, t, dt)
      forward_model (self, rep1\_K=1, rep1\_n=2, rep2\_K=1, rep2\_n=2, alpha0=1, alpha1=0, alpha2=0,
                       alpha3=0, a A=100.0, b A=0, K A=1, n A=2, a B=100.0, b B=0, K B=1, n B=2,
                       Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0,
                       fp \ 0=0, nt=100)
      residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)
class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol comp=None, color='orange')
      Bases: loica.operators.receiver.Operator
      A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of
      a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
      input [List [Regulator | Supplement]] The inputs of the operator that regulates the expression of the output
      output [Regulator | Reporter | List] The output of the operator that is regulated by the input
      alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
      K [int | float] Half expression input concentration in Molar
      n [int | float] Hill coefficient, cooperative degree (unitless)
```

```
uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
     characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal,
                      biomass_signal, gamma, lower_bounds=[0] * 8, upper_bounds=[100000000.0, 8,
                      100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2,
                      1, 0, 0, 0])
     expression_rate(self, t, dt)
     forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0,
                       alpha3=0, a A=100.0, b A=0, K A=1, n A=2, a B=100.0, b B=0, K B=1, n B=2,
                       Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0,
                      fp \ 0=0, nt=100)
     residuals(self, df, oddf, a A, b A, K A, n A, a B, b B, K B, n B, chem1, chem2, gamma)
class Metabolism(name=None)
     Context for gene expression, incorporates biomass and growth rate. ...
     name [str, optional] Name of the metabolism or correponding strain
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
     sbol comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
      __str__(self)
           Return str(self).
class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')
     A class that represents a DNA fragment that encode a genetic operator.
     output [Regulator | Reporter] The output of the operator that is regulated by the input
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
```

5.1. loica 33

```
__str__(self)
           Return str(self).
class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
      Bases: loica.operators.operator.Operator
      A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction
      of an inducible promoter that maps an external input into an output using a Hill function.
      input [Regulator | Supplement] The input of the operator that regulates the expression of the output
      output [Regulator | Reporter] The output of the operator that is regulated by the input
      alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
      K [int | float] Half expression input concentration in Molar
      n [int | float] Hill coefficient, cooperative degree (unitless)
      uri [str, optional] SynBioHub URI
      sbol comp [SBOL Component, optional] SBOL Component
      name [str, optional] Name of the operator displayed on the network representation
      color: str, optional Color displayed on the network representation
      unit: str, optional Units of the characterization data
      characterize(flapjack, receiver, inverter, media, strain, signal, biomass signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
      __str__(self)
           Return str(self).
      characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
      expression_rate(self, t, dt)
      forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100,
                       gamma=0, p0=0, nt=100)
      residuals(self, df, oddf)
class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')
      Bases: loica.operators.operator.Operator
      A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction
      of an inducible promoter that maps an external input into an output using a Hill function.
      input [Regulator | Supplement] The input of the operator that regulates the expression of the output
      output [Regulator | Reporter] The output of the operator that is regulated by the input
      alpha [List] [Basal expression rate, Regulated expression rate in MEFL/second]
      K [int | float] Half expression input concentration in Molar
      n [int | float] Hill coefficient, cooperative degree (unitless)
      uri [str, optional] SynBioHub URI
      sbol comp [SBOL Component, optional] SBOL Component
```

```
name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     unit: str, optional Units of the characterization data
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
     __str__(self)
           Return str(self).
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model (self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1]*100,
                       gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Regulator(name, init concentration=0, degradation rate=0, sbol comp=None, color='lightgreen')
     Bases: GeneProduct
     Representation of a regulatory gene product. Child of GeneProduct.
class Regulator(name, init_concentration=0, degradation_rate=0, sbol_comp=None, color='lightgreen')
     Bases: GeneProduct
     Representation of a regulatory gene product. Child of GeneProduct.
class Reporter(name, init_concentration=0, degradation_rate=0, signal_id=None, color='w',
                  sbol_comp=None)
     Bases: GeneProduct
     Representation of a regulatory gene product.
     signal_id [str, optional] Flapjack ID of the signal that the reporter is associated with.
     color [str, optional] Color of the reporter
class Reporter(name, init_concentration=0, degradation_rate=0, signal_id=None, color='w',
                  sbol comp=None)
     Bases: GeneProduct
     Representation of a regulatory gene product.
     signal_id [str, optional] Flapjack ID of the signal that the reporter is associated with.
     color [str, optional] Color of the reporter
class Sample(genetic network=None, metabolism=None, assay=None, media=None, strain=None)
     Representation of a sample that encapsulates GeneticNetwork and Metabolism. Incorporate environment infor-
     mation such as Supplements or chemicals, strain and media. Ex: 1 well in a plate, single cell. . . .
     genetic_network [GeneticNetwork] genetic network that is part of the sample
     metabolism [Metabolism] metabolism that drives the genetic network in the sample
     assay [Assay] assay to which this sample belongs
     media [str] Name of the media in the sample
     strain [str]
               Name of the strain in the sample
```

5.1. loica 35

```
Methods
```

```
add supplement(supplement, concentration) stablishes the concentration of Supplement
     initialize(self)
     set_regulator(self, name, concentration)
     set_reporter(self, name, concentration)
     set_supplement(self, supplement, concentration, profile=None)
     step(self, t, dt, stochastic=False)
class SimulatedMetabolism(name, biomass, growth rate)
     Bases: Metabolism
     Simulated context for gene expression, incorporates biomass and growth rate. ...
     name [str, optional] Name of the metabolism or correponding strain
     biomass A function of time that describes biomass f(t)=biomass
     growth_rate A function of time that describes the growth rate f(t)=growth rate
class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)
     Bases: Operator
     A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of
     a constitutive promoter that produces output.
     output [Regulator | Reporter] The output of the operator that is constitutively expressed
     rate [float] Output constitutive expression rate in MEFL/second
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
     __str__(self)
     characterize(self, flapjack, vector, media, strain, signal, biomass signal)
     expression_rate(self, t, dt)
     forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)
     Bases: Operator
     A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of
     a constitutive promoter that produces output.
     output [Regulator | Reporter] The output of the operator that is constitutively expressed
```

```
rate [float] Output constitutive expression rate in MEFL/second
     uri [str, optional] SynBioHub URI
     sbol_comp [SBOL Component, optional] SBOL Component
     name [str, optional] Name of the operator displayed on the network representation
     color: str, optional Color displayed on the network representation
     characterize(flapjack, receiver, inverter, media, strain, signal, biomass signal, gamma) Parameterize the
           Operator model that maps Input concentration into Output expression rate
     __str__(self)
     characterize(self, flapjack, vector, media, strain, signal, biomass_signal)
     expression_rate(self, t, dt)
     forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)
     residuals(self, df, oddf)
class Sum(input, output, alpha, K, n, uri=None, sbol_comp=None)
     Bases: Operator
     color = skyblue
     shape = s
     __str__(self)
     expression_rate(self, t, dt)
class Supplement(name, pubchemid=None, supplier_id=None, sbol_comp=None, color='pink')
     Representation of a chemical
     name [str] Name of the supplement
     concentration [int | float] concentration of the supplement in Molar
     pubchemid [str] PubChemID URI of the supplement
     supplier_id [str] Supplier ID of the supplement. An URL of the product that you aquire. Accepts list of the
           form [product URL, catalog number, batch].
     sbol_comp [str] SBOL component of the supplement.
     __str__(self)
           Return str(self).
class Supplement(name, pubchemid=None, supplier id=None, sbol comp=None, color='pink')
     Representation of a chemical
     name [str] Name of the supplement
     concentration [int | float] concentration of the supplement in Molar
     pubchemid [str] PubChemID URI of the supplement
     supplier_id [str] Supplier ID of the supplement. An URL of the product that you aquire. Accepts list of the
           form [product URL, catalog number, batch].
     sbol comp [str] SBOL component of the supplement.
```

5.1. loica 37

```
__str__(self)
Return str(self).

characterize_growth(flapjack, vector, media, strain, biomass_signal, n_gaussians, epsilon)

forward_model_growth(Dt=0.05, sim_steps=10, muval=[0] * 100, od0=0, nt=100)

gompertz(t, y0, ymax, um, l)

gompertz_growth_rate(t, y0, ymax, um, l)

load_loica(filename)

ramp_biomass(t, od0, start, slope)

residuals_growth(data, epsilon, dt, t, n_gaussians)

save_loica(obj, filename)

step_biomass(t, od0, start)

step_growth_rate(t, start)
```

SIX

INTRODUCTION

Welcome to the LOICA (Logical Operators for Integrated Cell Algorithms) repository, our Python package for designing, modeling and characterizing genetic networks.

As you may have noticed, our logo features a beautiful bird—loica (Leistes loyca); a bird native to Chile known for its particular red chest and legendary kindness, with which we share name.

SEVEN

INSTALLATION

Installing LOICA is way easier than pronuncing it!

pip install loica

For more details please refer to our Wiki for installation instructions and developer guides.

EIGHT

LOICA ALLOWS YOU TO:

- Compile Code into DNA fragments that execute Cell Algorithms
- Easy programation of genetic network models
- Generation of synthetic data
- Communicate with Flapjack
- Use and output SBOL files
- Use all sorts of cellular computation
- Easy, fluid and customisable DNA design

NINE

TUTORIALS

Now that you have LOICA installed you can familiarize yourself with the tool using the Jupyter notebook tutorials designed for this purpose.

PYTHON MODULE INDEX

```
loica, 9
loica.assay, 21
loica.colony, 22
loica.geneproduct, 22
loica.genetic_network, 23
loica.metabolism, 24
loica.operators, 9
loica.operators.hill1,9
loica.operators.hill2, 10
loica.operators.operator, 11
loica.operators.receiver, 11
loica.operators.source, 12
loica.operators.sum, 13
loica.sample, 25
loica.supplement, 26
loica.util, 26
```

48 Python Module Index

INDEX

Symbols	expression_rate() (Receiver method), 12, 17-19, 34,
str() (GeneProduct method), 22, 30 str() (Hill1 method), 10, 14, 31 str() (Hill2 method), 10, 15, 32, 33	35 expression_rate() (Source method), 13, 19-21, 36, 37 expression_rate() (Sum method), 13, 21, 37
str() (Operator method), 11, 16, 17, 33str() (Receiver method), 12, 17–19, 34, 35str() (Source method), 13, 19–21, 36, 37str() (Sum method), 13, 21, 37str() (Supplement method), 26, 37 A add_operator() (GeneticNetwork method), 23, 30	forward_model() (Hill1 method), 10, 15, 31 forward_model() (Hill2 method), 11, 15, 32, 33 forward_model() (Receiver method), 12, 17–19, 34, 35 forward_model() (Source method), 13, 19–21, 36, 37 forward_model_growth() (in module loica), 38 forward_model_growth() (in module loica.util), 27
add_regulator() (GeneticNetwork method), 23, 30 add_reporter() (GeneticNetwork method), 23, 30 Assay (class in loica), 28 Assay (class in loica.assay), 21	GeneProduct (class in loica), 29
B biomass() (DataMetabolism method), 25, 29	GeneProduct (class in loica.geneproduct), 22 GeneticNetwork (class in loica), 30 GeneticNetwork (class in loica.genetic_network), 23
C characterize() (Hill1 method), 10, 14, 31 characterize() (Hill2 method), 11, 15, 32, 33 characterize() (Receiver method), 12, 17-19, 34, 35 characterize() (Source method), 13, 19-21, 36, 37	<pre>gompertz() (in module loica), 38 gompertz() (in module loica.metabolism), 25 gompertz_growth_rate() (in module loica), 38 gompertz_growth_rate() (in module loica.metabolism), 25 growth_rate() (DataMetabolism method), 25, 29</pre>
characterize_growth() (in module loica), 38 characterize_growth() (in module loica.util), 27 Colony (class in loica), 29 Colony (class in loica.colony), 22 color (Sum attribute), 13, 21, 37	Hill1 (class in loica), 30, 31 Hill1 (class in loica.operators), 14 Hill1 (class in loica.operators.hill1), 9 Hill2 (class in loica), 32 Hill2 (class in loica.operators), 15
DataMetabolism (class in loica), 29 DataMetabolism (class in loica.metabolism), 24	Hill2 (class in loica.operators.hill2), 10
draw() (GeneticNetwork method), 23, 30 E express() (GeneProduct method), 23, 30	<pre>initialize() (GeneProduct method), 23, 30 initialize() (GeneticNetwork method), 23, 30 initialize() (Sample method), 26, 36</pre>
expression_rate() (Hill1 method), 10, 15, 31 expression_rate() (Hill2 method), 11, 15, 32, 33	K kymograph() (Colony method), 22, 29

L	loica.sample, 25
<pre>load_loica() (in module loica), 38</pre>	loica.supplement,26
load_loica() (in module loica.util), 27	loica.util, 26
loica	N.I.
module, 9	N
loica.assay	norm_kymo() (Colony method), 22, 29
module, 21	
loica.colony	0
module, 22	Operator (class in loica), 33
loica.geneproduct	Operator (class in loica.operators), 15–17
module, 22	Operator (class in loica.operators.operator), 11
loica.genetic_network	· · · · · · · · · · · · · · · · · · ·
module, 23	R
loica.metabolism	
module, 24	ramp_biomass() (in module loica), 38
loica.operators	ramp_biomass() (in module loica.metabolism), 25
module, 9	ramp_growth_rate() (in module loica), 38
loica.operators.hill1	ramp_growth_rate() (in module loica.metabolism), 25
module, 9	Receiver (class in loica), 34
loica.operators.hill2	Receiver (class in loica.operators), 17, 18
module, 10	Receiver (class in loica.operators.receiver), 11
loica.operators.operator	Regulator (class in loica), 35
module, 11	Regulator (class in loica.geneproduct), 23
loica.operators.receiver	Reporter (class in loica), 35
module, 11	Reporter (class in loica.geneproduct), 23
loica.operators.source	residuals() (Hill1 method), 10, 15, 31
module, 12	residuals() (Hill2 method), 11, 15, 32, 33
loica.operators.sum	residuals() (Receiver method), 12, 17–19, 34, 35
module, 13	residuals() (Source method), 13, 19–21, 36, 37
loica.sample	residuals_growth() (in module loica), 38
module, 25	residuals_growth() (in module loica.util), 27
loica.supplement	run() (Assay method), 22, 29
module, 26	S
loica.util	3
module, 26	Sample (class in loica), 35
module, 20	Sample (class in loica.sample), 25
M	<pre>save_loica() (in module loica), 38</pre>
	<pre>save_loica() (in module loica.util), 27</pre>
<pre>map_kymo() (Colony method), 22, 29 Metabolism (class in loica), 33</pre>	<pre>set_regulator() (Sample method), 26, 36</pre>
Metabolism (class in loica, 53 Metabolism (class in loica.metabolism), 25	set_reporter() (Sample method), 26, 36
module	<pre>set_supplement() (Sample method), 26, 36</pre>
loica, 9	shape (GeneProduct attribute), 22, 29
loica.assay, 21	shape (Sum attribute), 13, 21, 37
loica.colony, 22	SimulatedMetabolism (class in loica), 36
	SimulatedMetabolism (class in loica.metabolism), 25
loica.geneproduct, 22 loica.genetic_network, 23	Source (class in loica), 36
	Source (class in loica.operators), 19, 20
loica.metabolism, 24	Source (class in loica.operators.source), 12
loica.operators, 9	step() (GeneProduct method), 23, 30
loica.operators.hill1,9	step() (GeneticNetwork method), 24, 30
loica.operators.hill2,10	step() (Sample method), 26, 36
loica.operators.operator, 11	<pre>step_biomass() (in module loica), 38</pre>
loica.operators.receiver, 11	<pre>step_biomass() (in module loica.metabolism), 25</pre>
loica.operators.source, 12	<pre>step_growth_rate() (in module loica), 38</pre>
loica.operators.sum, 13	

50 Index

Index 51