Welcome to LOICA’s documentation!¶
Introduction¶
Welcome to the LOICA (Logical Operators for Integrated Cell Algorithms) repository, our Python package for designing, modeling and characterizing genetic networks.
As you may have noticed, our logo features a beautiful bird—loica (Leistes loyca); a bird native to Chile known for its particular red chest and legendary kindness, with which we share name.
Installation¶
Installing LOICA is way easier than pronuncing it!
pip install loica
For more details please refer to our Wiki for installation instructions and developer guides.
LOICA allows you to:¶
Compile Code into DNA fragments that execute Cell Algorithms
Easy programation of genetic network models
Generation of synthetic data
Communicate with Flapjack
Use and output SBOL files
Use all sorts of cellular computation
Easy, fluid and customisable DNA design
Tutorials¶
Now that you have LOICA installed you can familiarize yourself with the tool using the Jupyter notebook tutorials designed for this purpose.
API Reference¶
This page contains auto-generated API reference documentation 1.
loica
¶
Subpackages¶
loica.operators
¶
Submodules¶
loica.operators.hill1
¶A class that represents a DNA fragment that encode a genetic operator. |
- class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of a repressible or inducible promoter that maps an input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=0, odval=[1] * 100, gamma=0, p0_1=0, p0_2=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, gamma)¶
loica.operators.hill2
¶A class that represents a DNA fragment that encode a genetic operator. |
- class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='orange')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
…
- inputList [Regulator | Supplement]
The inputs of the operator that regulates the expression of the output
- outputRegulator | Reporter | List
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal, biomass_signal, gamma, lower_bounds=[0] * 8, upper_bounds=[100000000.0, 8, 100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2, 1, 0, 0, 0])¶
- expression_rate(self, t, dt)¶
- forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0, alpha3=0, a_A=100.0, b_A=0, K_A=1, n_A=2, a_B=100.0, b_B=0, K_B=1, n_B=2, Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0, fp_0=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)¶
loica.operators.operator
¶A class that represents a DNA fragment that encode a genetic operator. |
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
loica.operators.receiver
¶A class that represents a DNA fragment that encode a genetic operator. |
- class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction of an inducible promoter that maps an external input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- unit: str, optional
Units of the characterization data
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
loica.operators.source
¶A class that represents a DNA fragment that encode a genetic operator. |
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
Package Contents¶
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
- class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of a repressible or inducible promoter that maps an input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=0, odval=[1] * 100, gamma=0, p0_1=0, p0_2=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, gamma)¶
- class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='orange')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
…
- inputList [Regulator | Supplement]
The inputs of the operator that regulates the expression of the output
- outputRegulator | Reporter | List
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal, biomass_signal, gamma, lower_bounds=[0] * 8, upper_bounds=[100000000.0, 8, 100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2, 1, 0, 0, 0])¶
- expression_rate(self, t, dt)¶
- forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0, alpha3=0, a_A=100.0, b_A=0, K_A=1, n_A=2, a_B=100.0, b_B=0, K_B=1, n_B=2, Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0, fp_0=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)¶
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction of an inducible promoter that maps an external input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- unit: str, optional
Units of the characterization data
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction of an inducible promoter that maps an external input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- unit: str, optional
Units of the characterization data
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction of an inducible promoter that maps an external input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- unit: str, optional
Units of the characterization data
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
Submodules¶
loica.assay
¶
Module Contents¶
Assay measures a set of samples in parallel at a set of timepoints. |
- class Assay(samples, n_measurements, interval, name='Loica assay', description='', biomass_signal_id=None)¶
Assay measures a set of samples in parallel at a set of timepoints. Connects to flapjack to generate data, and to fit parameters to data.
…
- samplesList[Sample]
List of Samples that belongs to the Assay
- n_measurementsint
Number of measurements to take
- intervalint
Time in hours between each measurements
- namestr
Name of the Assay
- description: str
Descriptioin of the Assay
- biomass_signal_idint
Flapjack ID of the Assay that is associated with the Assay
- run(substeps=10, nsr=0, biomass_bg=0, fluo_bg=0)
Runs the Assay time series
- upload(flapjack, study)
Upload the data produced by running the Assay to Flapjack into the Study
Assay measures a set of samples in parallel at a set of timepoints Connects to flapjack to generate data, and to fit parameters to data
- run(self, substeps=10, nsr=0, biomass_bg=0, fluo_bg=0, stochastic=False)¶
Run the assay measuring at specified time points, with simulation time step dt
- upload(self, flapjack, study)¶
loica.colony
¶
Module Contents¶
loica.geneproduct
¶
Module Contents¶
A class that represents a gene product, protein or RNA. |
|
Representation of a regulatory gene product. |
|
Representation of a regulatory gene product. |
- class GeneProduct(name, init_concentration=0, degradation_rate=0, uri=None, sbol_comp=None, type_='PRO', color='silver')¶
A class that represents a gene product, protein or RNA.
…
- namestr
Name of the gene product
- init_concentrationint | float
Initial concentration of the gene product in Molar
- degradation_rateint | float
Degradation rate of the gene product
- type_str, optional
Molecular type of the gene product, could be ‘PRO’ or ‘RNA’
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- shape = ^¶
- __str__(self)¶
Return str(self).
- express(self, rate)¶
- initialize(self)¶
- step(self, growth_rate, dt)¶
- class Regulator(name, init_concentration=0, degradation_rate=0, sbol_comp=None, color='lightgreen')¶
Bases:
GeneProduct
Representation of a regulatory gene product. Child of GeneProduct.
- class Reporter(name, init_concentration=0, degradation_rate=0, signal_id=None, color='w', sbol_comp=None)¶
Bases:
GeneProduct
Representation of a regulatory gene product.
- signal_idstr, optional
Flapjack ID of the signal that the reporter is associated with.
- colorstr, optional
Color of the reporter
loica.genetic_network
¶
Module Contents¶
Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters. |
- class GeneticNetwork(vector=None)¶
Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters.
…
- operatorsList[Operator]
List of Operators that are part of the genetic network
- regulatorsList[Regulator]
List of Regulators that are part of the genetic network
- reportersList[Reporter]
List of Reporters that are part of the genetic network
- vectorint
Flapjack ID of the vector that is associated with the genetic network
- to_graph()
Builds a graph representation of the genetic netwok
- draw()
Generates a plot of the graph representation builded by to_graph()
- to_sbol(sbol_doc=None)
Generates a SBOL3 Document representation of the genetic network on sbol_doc
- add_operator(self, ops)¶
- add_regulator(self, regs)¶
- add_reporter(self, reps)¶
- draw(self, node_shape='o', node_size=500, linewidths=0, alpha=0.5, arrowsize=10, font_size=6, font_family='Tahoma', font_weight='bold', pos=nx.kamada_kawai_layout, contracted=False)¶
- initialize(self)¶
- step(self, growth_rate=1, t=0, dt=0.1)¶
- step_stochastic(self, growth_rate=1, t=0, dt=0.1)¶
- substep_stochastic(self, t=0, dt=0.1, growth_rate=1)¶
- to_contracted_graph(self)¶
- to_graph(self)¶
- to_sbol(self, sbol_doc: sbol3.Document = None) sbol3.Document ¶
Convert the genetic network to SBOL. :param sbol_doc: The SBOL document to add the genetic network to.
loica.metabolism
¶
Module Contents¶
Characterized context for gene expression, incorporates biomass and growth rate. |
|
Context for gene expression, incorporates biomass and growth rate. |
|
Simulated context for gene expression, incorporates biomass and growth rate. |
|
|
|
|
|
|
|
|
|
|
|
- class DataMetabolism(name, fj, media, strain, vector, biomass_signal)¶
Bases:
Metabolism
Characterized context for gene expression, incorporates biomass and growth rate. …
- namestr, optional
Name of the metabolism or correponding strain
- fjFlapjack
Flapjack instance used to fetch data from
- mediastr
Name of the media to query
- strainstr
Name of the strain to query
- vectorstr
Name of the vector to query
- biomass_signalstr
Name of signal to query and use as biomass
- biomass(t)
Return biomass at a given time from characterization data
- growth:rate(t)
Return growth rate at a given time from characterization data
- biomass(self, t)¶
- growth_rate(self, t)¶
- class Metabolism(name=None)¶
Context for gene expression, incorporates biomass and growth rate. …
- namestr, optional
Name of the metabolism or correponding strain
- class SimulatedMetabolism(name, biomass, growth_rate)¶
Bases:
Metabolism
Simulated context for gene expression, incorporates biomass and growth rate. …
- namestr, optional
Name of the metabolism or correponding strain
- biomass
A function of time that describes biomass f(t)=biomass
- growth_rate
A function of time that describes the growth rate f(t)=growth rate
- gompertz(t, y0, ymax, um, l)¶
- gompertz_growth_rate(t, y0, ymax, um, l)¶
- ramp_biomass(t, od0, start, slope)¶
- ramp_growth_rate(t, start, slope)¶
- step_biomass(t, od0, start)¶
- step_growth_rate(t, start)¶
loica.sample
¶
Module Contents¶
Representation of a sample that encapsulates GeneticNetwork and Metabolism. |
- class Sample(genetic_network=None, metabolism=None, assay=None, media=None, strain=None)¶
Representation of a sample that encapsulates GeneticNetwork and Metabolism. Incorporate environment information such as Supplements or chemicals, strain and media. Ex: 1 well in a plate, single cell. …
- genetic_networkGeneticNetwork
genetic network that is part of the sample
- metabolismMetabolism
metabolism that drives the genetic network in the sample
- assayAssay
assay to which this sample belongs
- mediastr
Name of the media in the sample
- strainstr
Name of the strain in the sample
Methods
- add_supplement(supplement, concentration)
stablishes the concentration of Supplement
- initialize(self)¶
- set_regulator(self, name, concentration)¶
- set_reporter(self, name, concentration)¶
- set_supplement(self, supplement, concentration)¶
- step(self, t, dt, stochastic=False)¶
loica.supplement
¶
Module Contents¶
Representation of a chemical |
- class Supplement(name, pubchemid=None, supplier_id=None, sbol_comp=None, color='pink')¶
Representation of a chemical
…
- namestr
Name of the supplement
- concentrationint | float
concentration of the supplement in Molar
- pubchemidstr
PubChemID URI of the supplement
- supplier_idstr
Supplier ID of the supplement. An URL of the product that you aquire. Accepts list of the form [product URL, catalog number, batch].
- sbol_compstr
SBOL component of the supplement.
- __str__(self)¶
Return str(self).
loica.util
¶
Module Contents¶
|
|
|
|
|
|
|
|
|
- characterize_growth(flapjack, vector, media, strain, biomass_signal, n_gaussians, epsilon)¶
- forward_model_growth(Dt=0.05, sim_steps=10, muval=[0] * 100, od0=0, nt=100)¶
- load_loica(filename)¶
- residuals_growth(data, epsilon, dt, t, n_gaussians)¶
- save_loica(obj, filename)¶
Package Contents¶
Classes¶
Assay measures a set of samples in parallel at a set of timepoints. |
|
Characterized context for gene expression, incorporates biomass and growth rate. |
|
A class that represents a gene product, protein or RNA. |
|
Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
Context for gene expression, incorporates biomass and growth rate. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
Representation of a regulatory gene product. |
|
Representation of a regulatory gene product. |
|
Representation of a regulatory gene product. |
|
Representation of a regulatory gene product. |
|
Representation of a sample that encapsulates GeneticNetwork and Metabolism. |
|
Simulated context for gene expression, incorporates biomass and growth rate. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
A class that represents a DNA fragment that encode a genetic operator. |
|
Representation of a chemical |
|
Representation of a chemical |
Functions¶
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- class Assay(samples, n_measurements, interval, name='Loica assay', description='', biomass_signal_id=None)¶
Assay measures a set of samples in parallel at a set of timepoints. Connects to flapjack to generate data, and to fit parameters to data.
…
- samplesList[Sample]
List of Samples that belongs to the Assay
- n_measurementsint
Number of measurements to take
- intervalint
Time in hours between each measurements
- namestr
Name of the Assay
- description: str
Descriptioin of the Assay
- biomass_signal_idint
Flapjack ID of the Assay that is associated with the Assay
- run(substeps=10, nsr=0, biomass_bg=0, fluo_bg=0)
Runs the Assay time series
- upload(flapjack, study)
Upload the data produced by running the Assay to Flapjack into the Study
Assay measures a set of samples in parallel at a set of timepoints Connects to flapjack to generate data, and to fit parameters to data
- run(self, substeps=10, nsr=0, biomass_bg=0, fluo_bg=0, stochastic=False)¶
Run the assay measuring at specified time points, with simulation time step dt
- upload(self, flapjack, study)¶
- class Colony(circuit=None, r0=1, mu0=1)¶
- fun(self, x)¶
- kymograph(self, nx, t0, tmax)¶
- map_kymo(self, kymo)¶
- norm_kymo(self, kymo)¶
- class DataMetabolism(name, fj, media, strain, vector, biomass_signal)¶
Bases:
Metabolism
Characterized context for gene expression, incorporates biomass and growth rate. …
- namestr, optional
Name of the metabolism or correponding strain
- fjFlapjack
Flapjack instance used to fetch data from
- mediastr
Name of the media to query
- strainstr
Name of the strain to query
- vectorstr
Name of the vector to query
- biomass_signalstr
Name of signal to query and use as biomass
- biomass(t)
Return biomass at a given time from characterization data
- growth:rate(t)
Return growth rate at a given time from characterization data
- biomass(self, t)¶
- growth_rate(self, t)¶
- class GeneProduct(name, init_concentration=0, degradation_rate=0, uri=None, sbol_comp=None, type_='PRO', color='silver')¶
A class that represents a gene product, protein or RNA.
…
- namestr
Name of the gene product
- init_concentrationint | float
Initial concentration of the gene product in Molar
- degradation_rateint | float
Degradation rate of the gene product
- type_str, optional
Molecular type of the gene product, could be ‘PRO’ or ‘RNA’
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- shape = ^¶
- __str__(self)¶
Return str(self).
- express(self, rate)¶
- initialize(self)¶
- step(self, growth_rate, dt)¶
- class GeneticNetwork(vector=None)¶
Representation of a genetic netowrk composed by a set of Operators, Regulators and Reporters.
…
- operatorsList[Operator]
List of Operators that are part of the genetic network
- regulatorsList[Regulator]
List of Regulators that are part of the genetic network
- reportersList[Reporter]
List of Reporters that are part of the genetic network
- vectorint
Flapjack ID of the vector that is associated with the genetic network
- to_graph()
Builds a graph representation of the genetic netwok
- draw()
Generates a plot of the graph representation builded by to_graph()
- to_sbol(sbol_doc=None)
Generates a SBOL3 Document representation of the genetic network on sbol_doc
- add_operator(self, ops)¶
- add_regulator(self, regs)¶
- add_reporter(self, reps)¶
- draw(self, node_shape='o', node_size=500, linewidths=0, alpha=0.5, arrowsize=10, font_size=6, font_family='Tahoma', font_weight='bold', pos=nx.kamada_kawai_layout, contracted=False)¶
- initialize(self)¶
- step(self, growth_rate=1, t=0, dt=0.1)¶
- step_stochastic(self, growth_rate=1, t=0, dt=0.1)¶
- substep_stochastic(self, t=0, dt=0.1, growth_rate=1)¶
- to_contracted_graph(self)¶
- to_graph(self)¶
- to_sbol(self, sbol_doc: sbol3.Document = None) sbol3.Document ¶
Convert the genetic network to SBOL. :param sbol_doc: The SBOL document to add the genetic network to.
- class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of a repressible or inducible promoter that maps an input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=0, odval=[1] * 100, gamma=0, p0_1=0, p0_2=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, gamma)¶
- class Hill1(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill1 Operator is an abstraction of a repressible or inducible promoter that maps an input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a_j, b_j, n_i=2, K_i=1, a_A=100.0, b_A=0, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=0, odval=[1] * 100, gamma=0, p0_1=0, p0_2=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, gamma)¶
- class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='orange')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
…
- inputList [Regulator | Supplement]
The inputs of the operator that regulates the expression of the output
- outputRegulator | Reporter | List
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal, biomass_signal, gamma, lower_bounds=[0] * 8, upper_bounds=[100000000.0, 8, 100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2, 1, 0, 0, 0])¶
- expression_rate(self, t, dt)¶
- forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0, alpha3=0, a_A=100.0, b_A=0, K_A=1, n_A=2, a_B=100.0, b_B=0, K_B=1, n_B=2, Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0, fp_0=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)¶
- class Hill2(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='orange')¶
Bases:
loica.operators.operator.Operator
A class that represents a DNA fragment that encode a genetic operator. The Hill2 Operator is an abstraction of a set of two repressible or inducible promoters that maps an 2 inputs into an output using a Hill function.
…
- inputList [Regulator | Supplement]
The inputs of the operator that regulates the expression of the output
- outputRegulator | Reporter | List
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
Return str(self).
- characterize(self, flapjack, receiver1, receiver2, chemical1, chemical2, nor_inverter, media, strain, signal, biomass_signal, gamma, lower_bounds=[0] * 8, upper_bounds=[100000000.0, 8, 100000000.0, 8, 100000000.0, 100000000.0, 100000000.0, 100000000.0], init_x=[1, 2, 1, 2, 1, 0, 0, 0])¶
- expression_rate(self, t, dt)¶
- forward_model(self, rep1_K=1, rep1_n=2, rep2_K=1, rep2_n=2, alpha0=1, alpha1=0, alpha2=0, alpha3=0, a_A=100.0, b_A=0, K_A=1, n_A=2, a_B=100.0, b_B=0, K_B=1, n_B=2, Dt=0.05, sim_steps=10, A=0, B=0, odval=[1] * 100, gamma=0, rep1_0=0, rep2_0=0, fp_0=0, nt=100)¶
- residuals(self, df, oddf, a_A, b_A, K_A, n_A, a_B, b_B, K_B, n_B, chem1, chem2, gamma)¶
- class Metabolism(name=None)¶
Context for gene expression, incorporates biomass and growth rate. …
- namestr, optional
Name of the metabolism or correponding strain
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Operator(output, name=None, uri=None, sbol_comp=None, color='skyblue')¶
A class that represents a DNA fragment that encode a genetic operator.
…
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- __str__(self)¶
Return str(self).
- class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction of an inducible promoter that maps an external input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- unit: str, optional
Units of the characterization data
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Receiver(input, output, alpha, K, n, name=None, uri=None, sbol_comp=None, color='skyblue')¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Receiver Operator is an abstraction of an inducible promoter that maps an external input into an output using a Hill function.
…
- inputRegulator | Supplement
The input of the operator that regulates the expression of the output
- outputRegulator | Reporter
The output of the operator that is regulated by the input
- alphaList
[Basal expression rate, Regulated expression rate in MEFL/second]
- Kint | float
Half expression input concentration in Molar
- nint | float
Hill coefficient, cooperative degree (unitless)
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- unit: str, optional
Units of the characterization data
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, a=0, b=1, K_A=1, n_A=2, Dt=0.05, sim_steps=10, A=[0], odval=[1] * 100, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Regulator(name, init_concentration=0, degradation_rate=0, sbol_comp=None, color='lightgreen')¶
Bases:
GeneProduct
Representation of a regulatory gene product. Child of GeneProduct.
- class Regulator(name, init_concentration=0, degradation_rate=0, sbol_comp=None, color='lightgreen')¶
Bases:
GeneProduct
Representation of a regulatory gene product. Child of GeneProduct.
- class Reporter(name, init_concentration=0, degradation_rate=0, signal_id=None, color='w', sbol_comp=None)¶
Bases:
GeneProduct
Representation of a regulatory gene product.
- signal_idstr, optional
Flapjack ID of the signal that the reporter is associated with.
- colorstr, optional
Color of the reporter
- class Reporter(name, init_concentration=0, degradation_rate=0, signal_id=None, color='w', sbol_comp=None)¶
Bases:
GeneProduct
Representation of a regulatory gene product.
- signal_idstr, optional
Flapjack ID of the signal that the reporter is associated with.
- colorstr, optional
Color of the reporter
- class Sample(genetic_network=None, metabolism=None, assay=None, media=None, strain=None)¶
Representation of a sample that encapsulates GeneticNetwork and Metabolism. Incorporate environment information such as Supplements or chemicals, strain and media. Ex: 1 well in a plate, single cell. …
- genetic_networkGeneticNetwork
genetic network that is part of the sample
- metabolismMetabolism
metabolism that drives the genetic network in the sample
- assayAssay
assay to which this sample belongs
- mediastr
Name of the media in the sample
- strainstr
Name of the strain in the sample
Methods
- add_supplement(supplement, concentration)
stablishes the concentration of Supplement
- initialize(self)¶
- set_regulator(self, name, concentration)¶
- set_reporter(self, name, concentration)¶
- set_supplement(self, supplement, concentration)¶
- step(self, t, dt, stochastic=False)¶
- class SimulatedMetabolism(name, biomass, growth_rate)¶
Bases:
Metabolism
Simulated context for gene expression, incorporates biomass and growth rate. …
- namestr, optional
Name of the metabolism or correponding strain
- biomass
A function of time that describes biomass f(t)=biomass
- growth_rate
A function of time that describes the growth rate f(t)=growth rate
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Source(output, rate, uri=None, sbol_comp=None, color='blue', name=None)¶
Bases:
Operator
A class that represents a DNA fragment that encode a genetic operator. The Source Operator is an abstraction of a constitutive promoter that produces output.
…
- outputRegulator | Reporter
The output of the operator that is constitutively expressed
- ratefloat
Output constitutive expression rate in MEFL/second
- uristr, optional
SynBioHub URI
- sbol_compSBOL Component, optional
SBOL Component
- namestr, optional
Name of the operator displayed on the network representation
- color: str, optional
Color displayed on the network representation
- characterize(flapjack, receiver, inverter, media, strain, signal, biomass_signal, gamma)
Parameterize the Operator model that maps Input concentration into Output expression rate
- __str__(self)¶
- characterize(self, flapjack, vector, media, strain, signal, biomass_signal)¶
- expression_rate(self, t, dt)¶
- forward_model(self, Dt=0.25, sim_steps=10, odval=[1] * 97, rate=1, gamma=0, p0=0, nt=100)¶
- residuals(self, df, oddf)¶
- class Supplement(name, pubchemid=None, supplier_id=None, sbol_comp=None, color='pink')¶
Representation of a chemical
…
- namestr
Name of the supplement
- concentrationint | float
concentration of the supplement in Molar
- pubchemidstr
PubChemID URI of the supplement
- supplier_idstr
Supplier ID of the supplement. An URL of the product that you aquire. Accepts list of the form [product URL, catalog number, batch].
- sbol_compstr
SBOL component of the supplement.
- __str__(self)¶
Return str(self).
- class Supplement(name, pubchemid=None, supplier_id=None, sbol_comp=None, color='pink')¶
Representation of a chemical
…
- namestr
Name of the supplement
- concentrationint | float
concentration of the supplement in Molar
- pubchemidstr
PubChemID URI of the supplement
- supplier_idstr
Supplier ID of the supplement. An URL of the product that you aquire. Accepts list of the form [product URL, catalog number, batch].
- sbol_compstr
SBOL component of the supplement.
- __str__(self)¶
Return str(self).
- characterize_growth(flapjack, vector, media, strain, biomass_signal, n_gaussians, epsilon)¶
- forward_model_growth(Dt=0.05, sim_steps=10, muval=[0] * 100, od0=0, nt=100)¶
- gompertz(t, y0, ymax, um, l)¶
- gompertz_growth_rate(t, y0, ymax, um, l)¶
- load_loica(filename)¶
- ramp_biomass(t, od0, start, slope)¶
- ramp_growth_rate(t, start, slope)¶
- residuals_growth(data, epsilon, dt, t, n_gaussians)¶
- save_loica(obj, filename)¶
- step_biomass(t, od0, start)¶
- step_growth_rate(t, start)¶
- 1
Created with sphinx-autoapi
Introduction¶
Welcome to the LOICA (Logical Operators for Integrated Cell Algorithms) repository, our Python package for designing, modeling and characterizing genetic networks.
As you may have noticed, our logo features a beautiful bird—loica (Leistes loyca); a bird native to Chile known for its particular red chest and legendary kindness, with which we share name.
Installation¶
Installing LOICA is way easier than pronuncing it!
pip install loica
For more details please refer to our Wiki for installation instructions and developer guides.
LOICA allows you to:¶
Compile Code into DNA fragments that execute Cell Algorithms
Easy programation of genetic network models
Generation of synthetic data
Communicate with Flapjack
Use and output SBOL files
Use all sorts of cellular computation
Easy, fluid and customisable DNA design
Tutorials¶
Now that you have LOICA installed you can familiarize yourself with the tool using the Jupyter notebook tutorials designed for this purpose.